Login

or
or

There are a lot of different methods to analyze miRNA-Seq and RNA-Seq data. majority of them involved a lot of installations and human efforts. In order to resolve this issue many different analysis suits and software packages are available online. Today I am going to analyze data using miARma-Seq suit, which was published in nature scientific reports in May 2016 (Original Article). Other than miARma-Seq many other tools and analysis suits are available which are mentioned below:

  1. Tools gene expression analysis, like ExpressionPlot5, GENE-counter6, RobiNA7, TCW8, Grape RNA-Seq9 or MAP-RSeq10
  2. Tools focuses on the analysis of miRNA expression profiles, such as DSAP11, miRanalyzer12, miRExpress13, miRNAkey14, iMir15, CAP-miRSeq16, mirTools 2.017 or sRNAtoolbox18
  3. Tools implemented to perform both RNA-Seq and miRNA-Seq analysis, such as wapRNA19, eRNA20, BioVLAB-MMIA-NGS21 or Omics Pipe22
  4. Methods integrating several software enabling different type of NGS analyses are GALAXY (https://galaxyproject.org/), QuasR23, RAP24, Subread/edgeR25, ViennaNGS26 suite

I found miARma-Seq most convenient and easy to install among all available options, so, I am going to install it and apply it on my datasets. I am starting from completely scratch on Ubuntu OS, using amazon cloud EC2 cloud. First we have to install all pre-requisites but if you are using already working server may be many of them are already installed on the machine.

  • Install make using "sudo apt install make"
  • Install GCC compiler, I installed using following command:

#GCC INSTALL
sudo apt-get update && \
sudo apt-get install build-essential software-properties-common -y && \
sudo add-apt-repository ppa:ubuntu-toolchain-r/test -y && \
sudo apt-get update && \
sudo apt-get install gcc-snapshot -y && \
sudo apt-get update && \
sudo apt-get install gcc-6 g++-6 -y && \
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-6 60 --slave /usr/bin/g++ g++ /usr/bin/g++-6 && \
sudo apt-get install gcc-4.8 g++-4.8 -y && \
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 60 --slave /usr/bin/g++ g++ /usr/bin/g++-4.8;

  • Test GCC installation by checking its version

gcc -v

GCC Installation

  • Install perl, I installed perl 5.6.1 but you can install the latest available version

wget http://www.cpan.org/src/5.0/perl-5.6.1.tar.gz
tar -zxvf perl-5.6.1.tar.gz
cd perl-5.6.1/
rm -f config.sh Policy.sh
sh Configure -de
make
make test
make install

  • Install R

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E298A3A825C0D65DFD57CBB651716619E084DAB9
sudo add-apt-repository 'deb [arch=amd64,i386] https://cran.rstudio.com/bin/linux/ubuntu xenial/'
sudo apt-get update
sudo apt-get install r-base

  • Test R installation

sudo -i R

R_Installed

  • Install JAVA

sudo apt-get update
sudo apt-get install default-jre
sudo apt-get install default-jdk

  • Test JAVA installation

java -version

  • Install Bioconductor packages in R, you need to start R with administrative permissions or use local R but don't forget to add path iof local R in bashrc

sudo R
source("https://bioconductor.org/biocLite.R")
biocLite()

  • Install miARmaSeq suite 

mkdir NGS
cd NGS
curl -L -O https://bitbucket.org/cbbio/miarma/get/master.tar.bz2
tar -xjf master.tar.bz2
cd cbbio-miARma-*
ls -l

  • Install miARmaSeq Examples

curl -L -O https://sourceforge.net/projects/miarma/files/Examples/Examples_miARma_mRNAs.tar.bz2
tar -xjf Examples_miARma_mRNAs.tar.bz2

miRMA_Installed

  • Test miARma

perl miARma Examples/basic_examples/mRNAs/1.Quality/1.Quality.ini --check
perl miARma Examples/basic_examples/mRNAs/1.Quality/1.Quality.ini

  • Download Genome or just give path of already downloaded genome in .ini files and matching .gtf files. I preferred to download genome from iGenome because they already have indexes of Bowtie1, Bowtie2, BWA and matching annotation files.

wget ftp://igenome:This email address is being protected from spambots. You need JavaScript enabled to view it./Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz
tar -zxvf Homo_sapiens_UCSC_hg19.tar.gz

Downloading_Genome_Igenomes

You can find miARma manual on the following link for further details (Manual). You can use Bowtie1, Bowtie2, HiSAT and STAR for mapping using this suite and Edge R + NOISeq for differential expression analysis. It also provides functional annotation.

If you want to change any default commands of miARma e.g. I wanted to use star but because of RAM limitations I was unable to use it, so, I changed the command in /lib/miARma/Aligner.pm. You can modify the default commands, only if you know what you are doing.

I hope you will enjoy your analysis with miARma. Please feel free to comment your feedback.

Search

Latest Articles

09 February 2018
26 January 2018
09 January 2018
09 January 2018

Breadcrumbs

© 2018 BioinfoGuide. All Rights Reserved.